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Abstract 

A companion study showed how a Galois field, GF (8), and its symmetries could be exploited 
to simplify the formal speicification of the ‘Hexad Algorithm’ by which a symmetric positive-
definite second moment ‘aspect tensor’ in three dimensional can always by decomposed into six 
one-dimensional aspect tensors acting along generalized grid lines. The present study extends 
this technique to four dimensions, where the symmetric aspect tensor possesses ten indepen-
dent components and where it is therefore the aim of the corresponding ‘Decad’ algorithm to 
produce ten generalized grid line generators, conforming collectively to a fixed pattern of lin-
ear relationships sufficient to ensure the set’s uniqueness in each case, and their corresponding 
nonnegative ‘aspect weights’. In four dimensions, this is a nontrivial task owing to several ad-
ditional geometrical and algebraic complexities not present in lower dimensions, as we will be 
discussed. Foremost amongst these is the fact that the natural and most symmetrical decompo-
sition of a generic aspect tensor into rank-one components along generalized grid lines leads, in 
the majority of cases, to a set of twelve (not ten) lines in a configuration with a high degree of 
symmetry. As in the three-dimensional case, the appropriate Galois field and associated finite 
projective geometry provides the means to distinguish and label the line directions, and thereby 
enables the high order of symmetry of the recovered line sets to be broken in a systematic and 
repeatable way. In this way a true ‘decad’ of ten lines directions can be unambiguously chosen 
and canonically orientated in every case of valid aspect tensor. The appropriate Galois field in 
this case is GF (16), most naturally represented by 4-vectors of binary digits, and its associated 
finite projective space is the three-dimensional one, PG(3, 2). 



1. Introduction 

This note extends the discussion of the companion office note (Purser, 2020), where the 
three-dimensional (3D) Hexad extension of the two-dimensional (2D) Triad algorithm was de-
scribed, in order to deal with the much more complicated four-dimensional (4D) case of the 
‘Decad’ algorithm for synthesizing anisotropic quasi-Gaussian covariance components by line 
filters. The original line filters were the so-called ‘recursive filters’ developed by Purser and Mc-
Quigg (1982), Hayden and Purser (1995) for empirical analyses, and by Wu et al. (2002), and 
Purser et al. (2003a, b) for variational analysis with the option of employing fully anisotropic 
covariances based on the Triad or Hexad methods in the 2D and 3D cases. The original moti-
vation for this study was to see whether the clear advantages that accrued from the adoption 
into the Hexad’s algorithmic strucure of the symmetries of the Fano plane, or PG(2, 2) finite 
projective space, would carry over into the space-time domain discretized by a 4D lattice, and 
allow the resolution of some long-standing technical obstacles to a satisfactory generalization, 
in this larger gridded space, of the Hexad algorithm to the analogous 4D Decad algorithm. 
By having, for the first time, a highly efficient means for convolving or smoothing weighted 
observational data with effective space-time covariances that can be stretched in the time di-
mension along Lagrangian trajectories as well as exhibiting the usual spatially distortions of 
a controlled imposed anisotropy, an additional motivating hope is that, in the not too distant 
future, we shall be able to emulate the proven successes of the anisotropic analyses of the 2D 
and 3d Real-Time Mesoscale Analysis (RTMA; for example, de Pondeca 2011) to some form 
of fully 4D ‘nowcasting’ extension into the temporal domain. This new capability will enable 
a greater temporal consistency within each analysis as compared against its input observations 
collected at different times, implying an improved dynamical consistency overall. But it also 
provides the means to extrapolate these temporally evolving smooth analysis increments for 
at least a short period into the future where their skill presumably persists, thereby avoiding 
the relatively exorbitant cost incurred by initializing and running a full dynamical model every 
time. 

We say a few words about the technical obstacles, mentioned above, that have hitherto 
precluded a simple generalization of the anisotropic covariance algorithms to four dimensions. 
In constrast to the 3D Hexad case, the 4D decomposition does not naturally result in a uniform 
set of essentially congruent polytopes (a ‘polytope’ is a generalization of the the concept of 
a ‘polygon’ or ‘polyhedron’ to any finite number of dimensions). To explain how the actual 
decomposition emerges (this argument will be valid in any number of dimensions), consider 
the tensor image in the space of N(N + 1)/2 independent components of the outer-product 
tensor of a generator of the regular lattice in N dimensions. (A generator is an irreducible 
integer N -vector, which points along some generalized line of the grid or lattice.) The opposite, 
or negative, of a generator is obviously also a valid generator; it identifies the same line and 
has the same tensor image. The tensor image is some integer vector in the higher-dimensioned 
aspect space, and the set of all such generators has a convex hull in that space (a convex hull of a 
set of points is defined as the set of all points that can be identified with a non-negative weighted 
mean of members of this set). The boundary of the convex hull forms a polyhedral convex shell 
– a hypersurface of dimension one less (i.e., (  N2 + N − 2)/2) than the dimensionality of the 
aspect space itself. In the cases where N = 2 or N = 3, the polytope elements that form this 
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shell are simplexes in 2 and 5 dimensions, which we can call ‘3-simplexes’ (or just triangles) 
and ‘6-simplexes’, after the numbers of vertices these simplexes possess. But the case in 4D is 
complicated by the fact that the aspect space 9D convex shell bounding the convex hull of the 
tensor images of the generators comprises two distinct types of polytope: the first kind, which 
we conveniently refer to as the ‘A-topes’, are indeed 10-simplexes as we might naively expect, 
but a second type of polytope is an object with 12 vertices, which we refer to as a ‘B-tope’. (In 
higher dimensions, N > 4, we should not be surprised that the geometrical description becomes 
even more complicated.) 

Figure 1. The Archimedean solid known as the ‘cuboctahedron’. 

One of the tasks required in order to develop a viable ‘Decad’ algorithm is to systematically 
dissect the B-topes into smaller fragments that are each a 10-simplex, because our aim is to 
synthesize any given aspect tensor in terms of line smoothers acting along only ten lines – the 
lines associated with the set of possible preimages of the vertices of the 10-simplexes. In the 
Hexad case, N = 3, the preimages of one of the six vertices of the 6-simplex were the mutually-
opposite pair of valid generators which defined one of the smoothing lines (recall, we usually do 
not distingush between a generator and its negative since they imply the same tensor image; 
the exception is when we need to perform linear operations with these generators). The set 
of six pairs of the preimages of the 6-simplex (i.e., 12 integer 3-vectors) always had a convex 
hull in the form of a squashed cuboctahedron, as depicted in Fig. 1. In N = 2, the Triad 
algorithm, the corresponding shape of the convex hull of the three pairs of preimages of the 
3-simplex, was a hexagon. In our N = 4 case, the 20 possible preimages of the ten vertices 
of the 10-simplex A-tope form the vertices of a 4D polytope which we can loosely think of as 
the 4D analog of the previously discussed hexagon and cuboctahedron; in its most isotropic 
(unsquashed) stretching, its boundary hypersurface is composed of 20 square-sided triangular 
prisms capped at their ends by ten tetrahedra. As in the 2D and 3D cases, this polytope is the 
convolution of a simplex with its dual. Alternatively, just as the hexagon can be regarded as the 
triangle with its vertices planed off, and the cuboctahedron regarded as the tetrahedron with its 
vertices and edges sufficiently planed off, our 4D object can be obtained by sufficiently planing 
(‘runcinating’) vertices, edges and planes of the 5-simplex and, for this reason, it is sometimes 
referred to as the ‘runcinated 5-cell’. The 24 preimages of the vertices of the B-tope, when 
linearly transformed to their most isotropic configuration, form the vertices of a well-known 4D 
regular polytope, the so-called ‘24-cell’. 
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We showed in the companion note that the simplest construction of the 3D Hexad algo-
rithm resulted by exploiting the symmetries imposed by tagging the lattice generators with 
the non-null elements of the Galois field, GF (8). Veblen and Bussey (1906) introduced the 
now standard classification of the finite projective geometries associated with Galois Fields, 
denoting the particular geometry of dimension d over the individual entries of a Galoid field 
GF (n) by ‘PG(d, n)’. The seven non-null element of GF (8), by which the Hexad algorithm 
is constructed in its most symmetric form, form seven ‘triads’ (with vector sums being zero) 
which we can associate with the projective plane of Fano (1892) and which, by the notation of 
Velblen and Bussey, is denoted PG(2, 2). The indices of any Galois field GF (pn) (effectively 
the ‘logarithms’ of the Galois field elements) can be taken to run from 0 through pn − 2 and to 
obey modular arithmetic, that is, addition modulo-(pn − 1), corresponding to (commutative) 
multiplication of the corresponding field elements. We also find that modulo-(pn − 1) mutipli-
cation by some k co-prime to (pn − 1) of the logarithms of the Galois elements, in other words, 
raising each element to the power k, induces a special kind of ‘automorphism’ – a structure-
preserving re-labeling of the elements of the projective geometry associated with that Galois 
field. These are properties that we exploit as we try to seek formulations of the Hexad and 
Decad algorithm that exhibit as much formal symmetry as possible. The cyclic indices of the 
Galois field non-null elements are informally referred to as ‘colors’ in the context of the 
Triad, Hexad and now the Decad algorithms. In these ‘chromatic’ polyad algorithms the 
colors were originally introduced to label, globally, the generator directions of the line filters 
so that, by grouping and performing all the operations of each successive color in order, we 
can guarantee the avoidance of any filtering conflict or tangle implied by one line of filtering 
running across another before either filtering operation is completed. It was only later that it 
was realized that, besides its advantage in providing a convenient line-labeling scheme, the 
Galois field concept could be advantageously exploited for it arithmetic attributes as well. 

The obvious chromatic extension of any decad algorithm would involve the 15 colors 
as-sociated with the non-null elements of the Galois field, GF (16). These 15 non-null 
elements are also equivalent to the 15 ‘points’ of the three-dimensional finite projective space, 
PG(3, 2) discussed in the next section. When we check, we indeed find that the colors of each of 
the pairs of preimages of the vertices of the 10-simplex A-tope, and the 12-pointed B-tope, 
are distinct in both cases, so this Galois field is the right one to use to order the set of line 
operations so that successive filtering operations cannot interfere with each other. In the 
next section we construct the elements of the particular integer 4-vector representation of GF 
(16) that we shall be adopting, and describe the associated finite geometry PG(3, 2). Sections 
3 and 4 will focus on the geometrical aspects and organization of the Decad algorithm, and 
the dissection of the B-topes into the required sub-simplexes. Section 5 contains a discussion 
and conclusions.

2. A representation of GF (16) and the associated geometry, PG(3,2)

We can think of the Galois field GF (24) as the coefficients, restricted to the residual prime
field, modulo-2, of polynomials, b + b z + b z2 + b z 30 1 2 3 , with a polynomial modulus, P (z) = 
1 + z + z 4, which means that all the polynomials can be reduced to just the set of up to degree-
3 with just a quartet (b0, b1, b2, b3) of binary digit components. Apart from the null polynomial, 
which is not of interest to us, we can start with the polynomial, g0 = 1 ≡ (1, 0, 0, 0), and derive 
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the rest by multiplying successively by z ≡ (0, 1, 0, 0) with the above modulus conditions. The 
resulting cyclic series of the elements gk are explicitly listed in Table 1. 

TABLE 1. A representation of the non-null elements of the Galois field, 
GF (16) as a cyclic sequence of 15 binary 4-vectors, that we can take as the 

       coefficients of a cubic polynomial in z.
D g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 

b0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 

b1 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 

b2 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 

b3 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 

The associative and commutative (‘Abelian’) laws of the operation of multiplication, which 
apply to polynomials with or without modular-arithmetic clauses, are inherited by the abstract 
elements gk of GF (24), as are additions on the understanding that components are added 
modulo-2. So, having established how these elements add and multiply, we can dispense with 
any further consideration of the particular ‘polynomial’ interpretation we adopted to motivate 
their formal creation. From here on, we shall regard the elements gk as either binary 4-vectors, or 
simply use their indices k as convenient labels of the objects (grid lines or their line generators) 
that we map to them. 

Unlike in the cases, N = 2 and N = 3, where the Galois fields had sets of non-null elements 
numbering prime numbers, (3 for the Triad algorithm, 7 for the Hexad algorithm), now, with 
N = 4, the 15 non-null elements of GF (16) means that the cyclic group C15 that the elements 
conform to under multiplication, factors into primes, 15 = 3 × 5. This has complicating conse-
quences in the construction of the Decad algorithm, as we shall find in the following sections. 

In the PG(3, 2) geometry, the ‘lines’ comprise all the triads of the non-null elements of 
GF(16) that sum to zero vectors of their representation. For brevity, we write the ordered triad 
{gi, gj , gk} such that gi + gj + gk = 0 as simply (i, j, k). These form the ‘lines’ of PG(3, 2). 
There are 35 such lines, which, in our chosen representation, comprise the following triads of 
the 15 points: 

Lk = (0, 2, 8) + (k, k, k), (mod 15) k = 0, . . . 14 (2.1a) 
L0k = (0, 1, 4) + (k, k, k), (mod 15) k = 0, . . . 14 (2.1b)  

L00 = (0, 5, 10) + (k, k, k), k = 0, . . . 4. (2.1c)k 
 

In this way, every pair of ‘points’ belongs to a unique ‘line’ that also contains one other point. 
Each plane comprises the union of a point, a line not including this point, and the three 
additional points belonging to the three lines between the original point and the points of the 
original line, thus making seven points in all. There are 15 planes which, in our representation, 
comprise the points: 

Pk = (0, 1, 2, 4, 5, 8, 10) + (k, k, k, k, k, k, k), (mod 15) k = 0, . . . 14. (2.2) 

Each plane contains seven lines: [ 
Pk = {Lk, Lk+2, Lk+8, L0 k, Lk 

0 
+1, L0 k+4, Lk 

00}, k = 0, 14, (2.3) 
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where the indices of L and L0 are treated modulo-15 and those of L00 are treated modulo-5. 
Each pair of planes intersects at a unique line, and each plane is itself a version of the Fano 
plane with undirected lines. 

Our use of the Fano plane geometry in the construction of the 3D Hexad algorithm used the 
special variant in which the Fano lines were directed, and these directions (or cyclic orderings of 
the points) were preserved by the ‘squaring automorphism’ of the structure defined by multiply-
ing ×2 modulo-7, the logarithms, or ‘colors’ of each of the Galois non-null elements. The larger 
geometry of PG(3, 2) does not lend itself to the consistent use of directed lines in the same way; 
for example, the operation of squaring, modulo-15, necessarily leads to the reversal of the di-
rections of some of the lines. Nevertheless, the four automorphisms induced by applying formal 
powers of 1  20  ≡ , 2 ≡ 21, 4 ≡ 22 , and 8  ≡ 23, do continue to map lines to lines, and therefore map 
our planes to planes as well. Multiplications by other numbers do not preserve the integrity 
of all of the lines, and will play no role in the further development. Note that 16 ≡ 24 ≡ 1 in 
modulo-15 arithmetic, so this cycle of consecutive squaring automorphisms is complete in four 
steps; in other words, this particular group of automorphisms is a representation of the cyclic 
group, C4. The restricted group of automorphisms, which we call Aut+{PG(3, 2)}, generated 
by arbitrary combinations of ‘squaring’ and ‘multiplying’ the elements of associated GF (16) 
is closed at |Aut+{PG(3, 2)}| = 60 elements. As in the case for the Hexad algorithm, this is 
technically a semi-direct product, 

Aut+{PG(3, 2)} = C15 o C4, (2.4) 

with C15 being the ‘normal’ subgroup of the pair (right and left cosets being the same, as 
discussed in the companion note). A notable difference from the 3D case is that the ‘lines’ of 
PG(3, 2) are not all images of one another under the action of elements of Aut+{PG(3, 2)}, 
since the lines of L00 form one invariant set, while those of L and L0 form another. Neverthe-
less, this group contains enough symmetry to make it advantageous to formulate the Decad 
algorithm in a way that conforms to these symmetries as much as possible. The full group, 
Aut+{PG(3, 2)}, of all possible automorphisms of the finite geometry is very much larger, in 
this case |Aut{PG(3, 2)}| = 20160, so we are only actively tapping into a very special subgroup 
of this larger group of structural symmetries of PG(3, 2) as we proceed. 

3. Lattice generators and symmetries 

We have referred to the 9-dimensional tensor-image polytopes as ‘A-topes’ when they possess 
10 vertices, and ‘B-topes’ when they possess 12; we shall refer to the preimages of the A-
topes as ‘decads’, comprising 10 pairs of the generators, and the preimages of the B-topes 
as ‘dodecads’, comprising 12 opposing pairs of generators, although in the presentations that 
follow, we generally exhibit only one member of each pair, and shall be careful also to choose 
these representative members in such a way that certain linear relationships amongst them, 
when they are framed in a standard ordering, are preserved. 

The most symmetrical presentations of lattice polytopes are often found by using a super-
lattice, either of higher dimensions, or possessing additional intermediate points, of which the 
lattice used in the practical computation constitutes a sub-lattice. In the cases of the polytopes 
that naturally generalize the 2D hexagon of the Triad algorithm, and the 3D cuboctahedron 

6 



of the Hexad algorithm, i.e., that are the convolutions of a minimal lattice simplex with its 
geometrical inversion, it is generally the case that a simple lattice in a dimension one higher 
than the intended dimension actually allows the most symmetrical presentation, by placing all 
the involved points on the obliquely angled plane through the origin on which all the integer 
lattice coordinates sum to zero. The same method also works for the decads (A-tope preimages), 
but does not help for the dodecads. We first consider the decads. 

A systematic construction of one member of each of the ten pairs of mutually-opposite 
generators of an idealized decad could produce the following possible tableau (which generalizes 
in the obvious way to any number of dimensions). Recall that the decad resides in an oblique 
4-dimensional subspace lattice, but is here exhibited in five dimensions (temporarily) in order 
to reveal the generic pattern of its most symmetrical presentation: 

(3.1) 

⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ 

1 
−1 

0 
0 
0 

1 
0 

−1 
0 
0 

1 
0 
0 

−1 
0 

1 
0 
0 
0 

−1 

0 
1 

−1 
0 
0 

0 
1 
0 

−1 
0 

0 
1 
0 
0 

−1 

0 
0 
1 

−1 
0 

0 
0 
1 
0 

−1 

⎫ 
0 ⎪⎪⎪0 ⎪ ⎬ 
0 ⎪⎪1 ⎪⎪⎭ −1 

. 

But we can rearrange these column 5-vectors, possibly switching some of their signs, and or-
ganize them into two related cycles of five, a set ‘G’ and a set ‘H’, each possessing a sign 
and indexed j from 0 to 4, in order to bring out more obviously some of the inherent latent 
symmetry of this decad: 

j = 0 1 2 3 4 j = 5 6 7 8 9 
G0 G1 G2 G3 G4 H0 H1 H2 H3 H4 

1 0 −1 0 0 0 0 0 1 −1 
DECAD(j) = −1

0
0
1

0
0 

1
−1

0 
0 

0 
−1

1 
0

−1
0

0
0

0 . 
1 

0 −1 0 0 1 0 0 1 −1 0 
0 0 1 0 −1 1 −1 0 0 0 

(3.2) 

Clearly, the sums of the G- and H- ‘pentads’ separately come to zero. If we take the indices 
modulo-5, we find that the following ‘triad’ relationships hold: 

Gj−1 + Hj + Gj+1 = 0 (3.3a) 
Hj−2 + Gj + Hj+2 = 0, (3.3b) 

as well as the ‘tetrad’ relationships: 

Gk + Hk + Hk+1 + Hk+4 = 0 (3.4a) 
Gk − Gk+1 − Hh+2 + Hk+4 = 0 (3.4b) 
Gk  Gk+1  Gk+3 − Hk+3  0.  + + = (3.4c)

But to see the full range of symmetries it is perhaps useful to show a graphical representation 
of these generators, together with their opposites (negatives), identified, in two distinct but 
dually-related ways, with the faces of a pair of regular icosahedra. We can also, arbitrarily, 
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G0
G1

G2G3

G4

H0

H1

H2H3

H4

-H0

-H1

-H2 -H3

-H4

-G0

-G1

-G2 -G3

-G4

G0 G1 G2 G3 G4 H0 H1 H2 H3 H4

1 0 0 0 -1 1 -1 0 1 -1

0 1 0 0 -1 0 0 -1 1 0

0 0 1 0 -1 1 -1 0 0 0

0 0 0 1 -1 1 0 -1 1 -1

-H0
-H2

-H4-H1

-H3

G0

G2

G4G1

G3

-G0

-G2

-G4 -G1

-G3

H0

H2

H4 H1

H3

-H0 -H2 -H4 -H1 -H3 G0 G2 G4 G1 G3

-1 0 1 1 -1 1 0 -1 0 0

0 1 0 0 -1 0 0 -1 1 0

-1 0 0 1 0 0 1 -1 0 0

-1 1 1 0 -1 0 0 -1 0 1

Figure 2. The identification of the signed-generators of the decad of (3.5) with the faces of a related pair of 
icosahedra. Alternative pentads, summing to zero, are found around every vertex, and the triads are found as 

the elements surrounding each triangular face. 

take the first four members of the G-pentad as the 4D lattice basis vectors, so that, relative to 
them, the coordinates of the G and H pentads become: 

j = 0 1 2 3 4 j = 5 6 7 8 9 
G0 G1 G2 G3 G4 H0 H1 H2 H3 H4 

DEC0(j) = 
1 
0 

0 
1 

0 
0 

0 
0 
−1 
−1 

1 
0 

−1 
0 

0 
−1 

1 
1 

−1 
0 

. (3.5) 

0 0 1 0 −1 1 −1 0 0 0 
0 0 0 1 −1 1 0 −1 1 −1 

Figure 2 sketches how we might map these decad vertices, of both signs, to the 20 faces of 
an icosahedron in two distinct but complementary ways. In the left panel, the ‘G’ generators 
with positive signs map to the inner ring, while the ‘H’ generators with positive signs map 
to the ring of corresponding neighbors of the inner ‘Gs’. The rotations and reflections of the 
icosahedron offer us many alternative inner rings from which other equally valid G-sets can 
be constructed, together with the corresponding H-sets taken from the ring of faces one step 
farther out. These alternative representations rotate the decad into a new presentation, but the 
linear relationships among the newly labeled G and H sets are still those of (3.5). This means 
the basis formed from the first four vectors is always enough to define the rest of the full decad 
of generators. An additional range of symmetries of the decads is obtained by consideration also 
of the alternatively arranged icosahedron of the right panel, which we can also rotate and reflect 
to provide other valid choices for the G-set and H-set in the same manner. In all, these options 
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provide 240 different ways of representing the same decad. We can ask: does this exhaust the 
symmetries of the decad? Recalling that the convex hull polytope of the decad in its most 
symmetric form, the runcinated 5-cell, is Archimedian (vertex-symmetric) and contains on its 
boundary hyper-surface ten congruent regular tetrahedra, we deduce, from the 24 rotation and 
reflection symmetries of each tetrahedron, that the total number of symmetries of the decad 
amount to 24 × 10 = 240. Thus, since the symmetries of a single icosahedron amount to 120, 
the identification of the symmetries with the pair of icosahedrons of Fig. 2 is a complete and 
faithful one. For example, an alternative but equivalent representation of the decad of (3.5) is 
obtained by a rotation (and a reflection) of the icosahedron of the right panel of Fig. 2 that 
implies the new inner ring of elements and their neighbors can be relabeled: 

{G0 
0, G1 

0 , G0 
2, G3 

0 , G0 
4|H0 

0 , H 0 
1, H2 

0 , H 0 
3, H4 

0 } = 

{G2, −G1, G0, −H0, −H2| − G3, H1, −G4, −H3, −H4}. (3.6) 

This happens to be the standard presentation chosen to initialize the final algorithm, and we 
will refer to it later. 

Unlike in the case of Hexad algorithm, we find that we cannot, without unduly complicating 
the algorithm, restrict our representations of the decads to a single chirality (and the same 
applies to the dodecads). We also note that reversing the signs of all the components of all 
components of vectors in 4D does not change the chirality, so a feature of the decad algorithm 
that we must get used to is that the generator vectors provided will not consistently be of the 
same sign from one location to the next, even when they are intended to indicate the same line. 
Next, we consider the dodecads. 

In the case of the dodecads (preimages of the 12-vertex B-topes) the most symmetrical 
presentation is found in the 4D equivalent of a ‘body-centered cubic’ simple lattice, which 
means that we can take the union of one orthogonal lattice of two-unit spacing (all coordinates 
even integers) together with the parallel congruent interlaced lattice of coordinates that are only 
odd integer entries. In that case, a representative from each opposing generator pair, in this 
most symmetrical presentation, might be chosen to be the twelve column vectors of the tableau 
(3.7), where they are arranged in three distinct quartets. By analogy to the sub-categories 
of cards in a deck, we shall refer to these quartets as ‘suits’ and arbitrarily label them S(0), 
S(1) and S(2), or just ‘suit-0’, etc., when there is no ambiguity. This categorization is intrinsic 
to the combinatorial structure of the dodecads (although the labels are not) since the group 
of 1152 symmetries of the 24-cell unfailingly maintains the integrity of each of these quartets. 
Geometrically, the four pairs of opposing vectors of a single suit define the eight vertices of an 
orthoplex (the dual to the hypercube). Also, the eight pairs of opposing vectors of any two of 
the suits define the 16 vertices of the hypercube itself. 

DODEC0(j) = 

j = 0 
(0)

S0 
2 
0 

1 
(0)

S1 
0 
2 

2 
(0)

S2 
0 
0 

3 
(0)

S3 
0 
0 

j = 4 
(1)

S0 
−1 
−1 

5 
(1)

S1 
1 
1 

6 
(1)

S2 
1 

−1 

7 
(1)

S3 
1 

−1 

j = 8 
(2)

S0 
−1 

1 

9
(2)

S1 
−1 

1 

10
(2)

S2 
−1 
−1 

11 
(2)

S3 
−1 (3.7)
−1 

0 0 2 0 −1 −1 1 −1 1 −1 1 −1 
0 0 0 2 −1 −1 −1 1 1 −1 −1 1 
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G0
G1

H0

G4

G2

H1

-H3-H2

H4

G3

-G3-G2

H2

-H4

H3

-H1

-G4-G1

-H0

{G0,G1,G2,G3,G4 | H0,H1,H2,H3,H4}

{H0,H2,-H3,-G2+G3 | G1,-H1,G2,-H4-H2 | G4,-G3,H4,H3+H1}

= {S
(0)

0,S
(0)

1,S
(0)

2,S
(0)

3 | S
(1)

0,S
(1)

1,S
(1)

2,S
(1)

3 | S
(2)

0,S
(2)

1,S
(2)

2,S
(2)

3 }
Figure 3. A geometrical representation of a generic transition from a decad to the neighboring dodecad, showing 
the three-fold symmetry of the transition rule. In the case illustrated, the generator G0 is retired, and three new 

(0) (1) (2)
generators are recruited, which become named S3 , S3  and S3  after the other nine are renamed in accordance
to the pattern for dodecads, as shown. By rotating this icosahedral representation we deduce the transition rules 
involved in the retirement of any of the ten generators by applying the rules implied by the application of the 

same pattern used here. 

Treated as a 4 × 10 matrix, the submatix of DEC0 of (3.5) formed by its first four columns 
is the identity matrix, so the whole of DEC0 can be used to complete any decad from a 
‘basis’ given by its first four generators (with attention paid to their mutually-consistent signs) 
by multiplying on the right by matrix DEC0. Analogously, treated as a 4 × 12 matrix, the 
submatrix of DODEC0 of (3.7) formed by its first four columns is twice the identity. But, as 
with the decads, the dodecads can also be completed from only their first ‘basis’ vectors, except 
we must multiply the basis on the right by DODEC0 and divide the result by two to get the 
final tableau representing the completed dodecad. 

A careful geometrical analysis reveals that each A-tope only has B-topes for neighbors 
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(the converse is not true, though). We can use the icosahedral representations to illustrate 
schematically how a transition occurs between an A-tope and its neighboring B-tope. In such 
a transition, the A-tope loses one generator pair, which, by suitable relabeling according to 
the valid symmetries we have discussed, we can identify with a ±G0 generator pair. Rotate 
one of the icosahedrons (either one will do, but the figure shows the one of the left panel of 
Fig. 2) into the configuration of Fig 3. Then the vectors of the three suits of the dodecad 
corresponding to the B-tope into which the A-tope transitions, are all given by a formula such 
as the one indicated in that figure. There are 1152 symmetries of the dodecad, so there are 
many valid representations. For example, a cyclic rotation of the diagram by 120◦ leads to the 
same dodecad, except with the suits cyclically rotated. 

If we consider the generators belonging to the new dodecad that were not part of the original 
decad, i.e.,   the generators (i)

S3 with i = 0, 1, 2, we can verify from the standard tableau of (3.7)
that these three vectors do not constitute a triad – their sums and differences never result 
in a null 4-vector. From the symmetries of the dodecads under the linear operations that 
permute their vertices, there are a total of 48 such ‘non-triads’ whose loss from the dodecad 
must therefore result in a transition to a different neighboring A-tope. In the case of the loss 
of a set of three generator pairs which are triads, of which there are 16 instances (one member 
from each suit), the transition cannot be to another A-tope and must therefore result in a 
transition to a neighboring B-tope. We are not ultimately interested so much in the transitions 
between the B-topes themselves, as we really want to further decompose them into smaller 
10-simplex fragments first. But we note that, as the line-smoothing weights associated with 
any set of three generator pairs of the dodecad go to zero, a transition occurs at which only nine 
weights generically remain nonzero, implying that the boundary element at which this occurs is 
a 9-simplex (in eight dimensions). Thus, the B-tope is bounded by 64 9-simplexes, 48 of them 
separating the B-tope from an A-tope and 16 of them separating it from another B-tope. 

We leave discussion of the ways in which the B-tope can be dissected into more useful pieces 
for a later section. But we have seen how the very large orders of intrinsic symmetry of the 
A-tope (240) and B-tope (1152) under vertex-permuting linear operations imply that, in order 
to find unique representations of each object (at least, up to uniform sign reversal of all their 
generators) we need to break these symmetries drastically. The artificial imposition of a Galois 
field served that purpose in the cases of the Triad and Hexad algorithms, with each member 
of those polyads always being of a distinct ‘color’ and the pattern, or ‘spectrum’, of colors in 
those cases allowed each polyad to be uniquely oriented; the question we must answer before 
we proceed is whether the same is true in the 4D case where the symmetries that need to be 
broken are of a spectacularly higher order, and where there are two species of the tensor-image 
polytopes to be dealt with, not just one. 

In the case of the representative decad of (3.5); if we simply ignore the signs of the vector 
components there, the resulting binary digits of each column are certainly different. If any 
other valid decad maps to the Galois field in eactly the same way, then, owing to the form 
of the transition rule depicted in Fig. 3, the imprint into the set of Galois field components 
of the corresponding neighboring dodecad of this alternative decad will also correspond to the 
dodecad neighbor of our original reference decad. The ‘colors’ of the members of the reference 
default decad of (3.6) and the ‘colors’ of the dodecad resulting from the transition depicted in 
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TABLE 2. Table of the standard tableau indices of the vertices vk of the generator poly-
tope, arranged by colors in the case where each decad is at a color off-set of 0. The empty 
slots are denoted by ‘X’ and the sequences of ‘gaps’ between these unoccupied gk are listed 
in the last column. The horizontal line partitions equivalence classes related to each other 

by kinship under the squaring automorphism of the associated Galois field. 
K g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 Gaps 

0 X 6 8 X X X X 7 3 9 5 1 0 2 4 3,1,1,1,9 

1 X 3 6 9 8 5 X 1 X 0 X 2 X 4 7 6,2,2,2,3 

2 X X 3 0 6 X 9 2 8 X 5 4 X 7 1 1,4,4,3,3 

3 X 8 X X 3 5 0 4 6 X X 7 9 1 2 2,1,6,1,5 

4 X X X 8 6 4 X X 7 3 9 2 1 0 5 1,1,4,1,8 

5 X 7 X 3 X 9 8 2 6 1 4 0 X 5 X 2,2,8,2,1 

6 X 6 7 1 X 4 3 0 X X 9 5 8 X 2 4,4,1,4,2 

7 X X 6 X 7 9 1 5 X 8 4 X 3 2 0 1,2,5,3,4 

8 9 X 0 5 X 4 X 7 3 X X 1 8 6 2 3,2,3,1,6 

9 9 3 X X 0 X 5 1 X 8 4 6 X 2 7 1,2,3,4,5 

10 X 1 5 9 6 4 2 X 7 8 3 X 0 X X 4,2,1,1,7 

11 X 7 0 X 9 8 X 4 1 X 3 5 X 2 6 3,3,3,3,3 

L ≡ 12:27 X 2 X 6 1 0 4 11 X 8 3 10 9 7 5 2,6,7 
0 L ≡ 28:43 X X 2 8 X 3 6 10 1 9 0 7 4 5 11 1,3,11 
00 L ≡ 44:59 X 2 1 11 0 X 6 7 3 5 X 8 10 4 9 5,5,5 

Fig. 3 are the ordered sets: 

Galois colors of (G0 
i|H 0 )i = (2, 1, 0, 13, 9|3, 8, 12, 7, 14) (3.8a) 

(0) (1) (2)Galois colors of (S |S |S )i i i = (3, 12, 7, 6|1, 8, 0, 5|9, 13, 14, 11), (3.8b) 

and the colors that are missing from these polyads are: 

Colors not in (G0 
i|H 0 )i = {4, 5, 6, 10, 11} (3.9a) 

(0) (1) (2)Colors not in (S |S |S )i i i = {2, 4, 10}. (3.9b) 

Not only are we encouraged by seeing that the colors present in the neighboring dodecad are all 
distinct, but we notice that the missing colors corresponds to a triad or, in the terminology of 
the finite projective geometry, to a ‘line’ of PG(3, 2). There is nothing about the way we have 
chosen to map the lattice of generators into this finite projective space that would make this 
particular ‘line’ special; on the contrary, we should expect that, if one dodecad has colors that 
are the complement of those that form a line, then the colors of all of the possible dodecads 
should correspond to the complements of the 35 various lines of PG(3, 2), and this proves to 
be the case. It is convenient to denote the 15 dodecads with line-complements of the type L 
the set,  0L, the 15 with line-complements of type L0 the set, L , and the five that complement 
lines of the type L00 the set 00L . We also observe that, for each suit, the PG(3, 2) points that 
label its four generators all belong to one plane of that finite projective geometry – the other 
three points of the plane being those of the aforementioned line which complements 12 points 
of the dodecad. The example (3.8b) of a dodecad happens to be a complement of a member of 
the family of lines we denoted L according to (2.1a), but the other families are represented by 
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other corresponding families of dodecads, and the incidence sequences, or spectra, within the 
cyclic set, {0, . . . , 14}, of colors, are the same for each line and uniquely identifies it – a kind 
of ‘fingerprint’. Naturally, we choose to make the sequence associated with each of the three 
line types L, L0 and L00 , identical apart from the necessary color shift modulo-15 (for L, L0) or 
modulo-5 (for L00). We also exploit the fact that the squaring automorphism interchanges the 
lines of L and L0 , so we can exploit this additional symmetry when we standardize the labeling 
of the vertex-pairs of each dodecad. 

Given that we have found a helpful correspondence of the dodecads with the line and plane 
elements of PG(3, 2), we seek a corresponding ‘geometrical’ interpretation, within PG(3, 2), of 
the objects we have called the ‘decads’. It turns out that the A-tope decad has a subset of ten 
colors which: 

(i) Does not contain any plane of PG(3, 2) 
(ii) Contains a unique plane each time just one of the missing colors is included. 

TABLE 3. Table of the relative Galois field ‘col-
ors’ gk of the vertices vk of each A-tope 

K v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 

0 12 11 13 8 14 10 1 7 2 9 

1 9 7 11 1 13 5 2 14 4 3 

2 3 14 7 2 11 10 4 13 8 6 

3 6 13 14 4 7 5 8 11 1 12 

4 13 12 11 9 5 14 4 8 3 10 

5 11 9 7 3 10 13 8 1 6 5 

6 7 3 14 6 5 11 1 2 12 10 

7 14 6 13 12 10 7 2 4 9 5 

8 2 11 14 8 5 3 13 7 12 0 

9 4 7 13 1 10 6 11 14 9 0 

10 12 1 6 10 5 2 4 8 9 3 

11 2 8 13 10 7 11 14 1 5 4 

TABLE 4. Table of the relative Galois field ‘colors’ gk of the ver-
tices vk of each class of B-tope 

K v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 

L ≡ 12:27 
0 L ≡ 28:43 

5 

10 

4 

8 

1 

2 

10 

5 

6 

12 

14 

13 

3 

6 

13 

11 

9 

3 

12 

9 

11 

7 

7 

14 
00 L ≡ 44:59 4 2 1 8 13 9 6 7 11 14 12 3 

 

When this geometrical specification is adopted and applied to every possible subset of ten 
colors, we find that the number of possible decad color configurations is 168. This is the 
number we expect when we remember that each B-tope has 48 neighboring A-topes, and each 
A-tope has 10 neighboring B-topes, since we have established already that the number of color 
combinations for the B-topes is 35. (168 = 48 × 35/10). Eleven patterns exist subject to a color 
off-set in the range 0–14, and one, with a cyclically symmetric pattern to its missing colors (i.e, 
every third one) exists subject to a color off-set 0–2. These ‘incidence patterns’ are all tabulated 
with what we have chosen as the ‘default’ color rotation, in Table 2, together with those of the 
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dodecads, whose identifiers (labels K), anticipating their future further dissections into smaller 
pieces, are gathered into bundles of 16 at the bottom of the table. In the last column is listed 
the cyclic sequence of ‘gaps’ in the complementary incidence pattern imprinted by the missing 
colors (these cyclic sequential gaps are invariant to color off-set, and the fact that each is 
recognizably distinct from the others confirms that each type of decad or dodecad can be both 
recognized from its colors, and uniquely oriented by means of this table of standardized vertex 
assignments. An alternative and often more convenient tabulation of the same information is 
obtained in Tables 3 and 4, where the Galois colors, gk, are listed for each standardized polyad 
vertex, vk, for the A-topes and B-topes. 

If we refer back to the example of the decad of (3.8a) we find that it fits the exact pattern in 
Table 3 at row K = 4 except for the colors gk cyclically shifted by four places. The dodecad it 
transitions into, i.e., that of (3.8b) can be found, in a slightly permuted form, in the row of the 
table that corresponds to K ∈ L with a color shift of two places, and where the permutations 
are all within each respective suit. The exact arrangements of the decads and dodecads in the 
table are somewhat arbitrary, and not necessarily the most symmetric taken as a whole, but 
they do enable us to orient all the polyads in an unambiguous way once these conventions for 
what we regard to be the ‘standard’ orientations are agreed upon. 

We can verify that, subject to repeats of the now-familiar squaring automorphism, these 
decads and dodecads stay within various equivalence classes, cycling through with periods of 
one, two, or four. The dodecads in the sets L and 

0 L form one equivalence class with period-2, 
leaving those in the set 00L in a period-1 class by themselves. The A-tope decads fall into 
five equivalence classes. The first, of period-4, each have just one of their neighbor B-topes 
of belonging to the class 00L , while the second equivalence class, also of period-4, all have two 
such neighbors. There is a class of period-2 that also have two neighbors in 

00L . One of the 
two period-1 classes of the decads has 15 color types, and the other period-1 class has a color 
spectrum with the five-fold periodicity that implies that it can possess only three distinguishable 
color sub-types. In the cases of classes of period-4, the standard presentation in each member 
of the class can be chosen to make it a straightforward squaring automorphism of the member 
that preceeds it in a cyclic sense. But in the cases of equivalence classes of period-2, we can 
standardize the arrangement of generators in the first member, and arrange to make the second 
follow directly from it by the squaring automorphism, but then the first only follows from the 
second when this automorphism is combined with a rotation, or permutation of the vertices of 
the A-tope. Likewise, for the classes with only one member each, they map into themselves 
under this automorphism, but only with a rotation (which itself forms a cyclic group of period-
4). The tables respect these subdivisions into equivalence classses, which involve the identifying 
indices, K, for the A-topes defining the cycles (0 : 3), (4 : 7), (8 : 9), (10) and (11) (this last being 
the one with only three color variants, owing to the five-fold periodicity of its color spectrum). 

Next we deal with the problem of constructing true decads – preimages within the space of 
generator-pairs, of 10-simplex partitions of the B-topes. 

4. partitioning the B-topes into 10-simplexes 

Recall that, in the case of the B-tope, the + and - generators that correspond to the 12 
vertices have a convex hull which, under an isotropizing linear distortion, corresponds to the 
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regular 24-cell polytope in 4D. Their vertices then fall naturally into three sets or ‘suits’ whose 
eight generators are vertices of an orthoplex. That is, four + and − copies of orthogonal vectors 
corresponding to all the S(0), or all the  S(1), or all the S(2) of the dodecads. We can permute 
the four independent generators of suit S(0) (24 symmetries) and we can switch their signs (×16 
symmetries), and we can further replace our suit S(0) (‘suit-0’) by either the suit-1 or the suit-2 
(×3 further symmetries), using the linearity relationships of DODEC0 of (3.7) to regenerate 
the remaining generators – that’s 1152 symmetries in all. 

Restricting to symmetries that preserve the three suits reduces the number again by a factor 
1/6, resulting in 192 suit-preserving symmetries. Owing to the mutual orthogonality of the four 
independent generators in each suit in the isotropizing frame, the aspect centroids of the three 
suits coincide, being therefore the aspect centroid of the whole B-tope. We call this central 
aspect point the ‘hub’; it is useful for anchoring the further dissections of the B-tope into true 
simplexes. As previously noted, if we remove one member from each suit and take the convex 
hull of the resulting 9-point object in aspect space, we obtain a 9-simplex in an affine space of 
eight dimensions that forms one boundary flat of the B-tope; all boundary flats are of this form. 
Since there are 4 × 4 × 4 = 64 different ways of downsizing the suits in this way, our B-tope is 
64-sided and can be dissected into true 10-simplexes by augmenting each boundary 9-simplex, 
one at a time, with the hub and taking the convex hull. Note, however, that the hub does not 
possess a preimage in the form of any single generator, so the 64 10-simplexes obtained in this 
way do not immediately solve the problem of decomposing the preimage of this portion of the 
aspect space into equivalent decads. 

Also, we note that these 64 10-simplexes are not all congruent. When we pick one suit-0 
vector, one suit-1 vector, and one suit-2 vector for exclusion, two cases can occur: 

(i) the excluded vectors can form a linearly dependent ‘triad’, which can occur in 16 ways; 
(ii) they can form a linearly independent ‘non-triad’, which can occur in 48 ways. 
The combinations of three generator vectors, each from a different suit, that form dependent 

triads (and thus map to respective ‘lines’ of PG(3, 2)) form 16 4 × 3 arrays, Sa, indexed, a ∈ 
{0 : 15}, h i 

(0) (1) (2)Sa = Sia 
Sja 

Ska 
, ia, ja, ka ∈ [0 : 3] (4.1) 

where the column vectors are taken from the tableau (3.7). To each Sa, an associated ‘sign’-
vector,  ( (0) (1) (2) 

σT 
a = σa , σa , σa ) with (m)

σa = ±1, serves to define the triad conditions in matrix
notation: 

Sa ·σa = 0, (4.2) 

where the 16 index-triples, {ia, ja, ka}, and sign-vectors, σa, can be formally defined: 

ia = a (mod 4) (4.3a) 
ja = b(a/4) (4.3b)� 

3 : ia + ja = 3 
ka = , (4.3c)|ia − ja| : otherwise 

and, with the aid of the usual Kronecker delta: 

σ(0) 
a = 2 − δia,ja (4.4a) 
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σ(1) = 2 − δia,0 (4.4b)a 

σ(2) = 2 − δ0,ja (4.4c)a 

These 16 triads of the dodecad in its standard form are listed in Table 5 

TABLE 5. Triads of the standardized dodecad 

ia a 

ja = 

σa 

0 

ka a 

ja = 

σa 

1 

ka a 

ja =

σa

 2 

 ka a 

ja =

σa

 3 

 ka 

0 0 − − − 0 4 + − + 1 8 + − + 2 12 + − + 3 

1 1 + + − 1 5 − + + 0 9 + + + 3 13 + + + 2 

2 2 + + − 2 6 + + + 3 10 − + + 0 14 + + + 1 

3 3 + + − 3 7 + + + 2 11 + + + 1 15 − + + 0 

If we ignore the signs and consider only the indices themselves to form integer 3-vectors, 
these instances collectively trace out the corners and joining edges of a tetrahedron in the cube, 
[0 : 3] × [0 : 3] × [0 : 3] of the index lattice. We shall call the 48 sub-simplexes whose non-hub 
nonets are complements of the non-triads the ‘C-topes’ of this B-tope. We shall call the 16 
subsimplexes whose non-hub nonets are complements of triads the ‘D-topes’ of this B-tope. 

To recapitulate, a B-tope is the union of 48 C-topes and 16 D-topes. This dissection enables 
us to navigate in aspect space from one simplex to another, almost as we do in the 2D triad or 
the 3D hexad algorithm, except now our simplexes come in three varieties and we must know 
how they make contact with one another. The connectivity is summarized as follows 

(i) Each A-tope meets the C-topes of 10 different neighboring parent B-topes on each of the 
A-tope’s ten sides; 

(ii) Each C-tope meets an exterior A-tope of the side opposite the hub (being the converse 
relationship to (i); 

(iii) Each C-tope meets another interior (same B-tope) C-tope on six of its other sides; 
(iv) Each C-tope meets interior D-topes at its remaining three sides. 
(v) Each D-tope meets an exterior D-tope (from a neighboring B-tope) across the side 

opposite the hub; 
(vi) Each D-tope meets only interior C-topes on its remaining nine sides. 
We might inquire: how do we know whether the C-tope’s interior neighbor is a C-tope or a 

D-tope? First, some more terminology. We call the three B-tope vertices that do NOT belong 
to a contained C-tope the ‘non-vertices of that C-tope, and likewise for a contained D-tope. To 
answer our question, when the opposite vertex of the original C-tope forms a non-triad with 
the two non-vertices of the other suits, that side of the C-tope abuts an interior C-tope; if on 
the contrary, the opposing vertex plus the two non-vertices of the other suits form a triad, then 
contact is made with an interior D-tope. 

While this description of the geometry of the tensor-images of generators of the 4D lattice 
helps us to navigate through the aspect space tiled by the various A-tope, C-tope and D-tope 
10-simplexes, we are not yet able to use these structures to define decads of generators (except in 
the case of the A-topes) because the hub points shared by the C- and D-topes of a B-tope have 
no single preimage in the form of a lattice generator. An early form of the algorithm exploited 
the fact that the preimages of all twelve of the vertices of the parent B-tope, which had the 
hub as its centroid, could be attributed an equal additional amount of smoothing ‘weight’ in 
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the appropriate proportion to the aspect tensor projection onto the 10-vector defining the hub. 
This was in order to partially mimic a true decad algorithm. However, this required that, 
at most points of the geographical filtering lattice, a positive amount of line smoothing was 
required to be applied along no less than twelve distinct line directions. In order to achieve a 
more satisfactory algorithm involving only true decads of generators at each lattice point, we 
need to find some way to dissect the 12-point polytopes of the aspect space into 10-simplexes 
whose vertices all belong to the original set of twelve. Moreover, for continuity of the smoothing 
operations on the 4D lattice, it is important that a way is found to ensure that the dissection is 
carried out in exactly the same way each time this particular 12-point polytope is encountered. 

We find that the hub point is the centroid not just of the set of twelve vertices of the parent 
B-tope, but of each suit of four vertices of that B-tope separately. This means that, in principle, 
the interior aspect vectors of either a C-tope or a D-tope can be obtained by a barycentric 
weighting of their nonet of B-tope-boundary generators plus one set of four equally-weighted 
suit members from a single chosen suit, making the total number of involved generators 10, 
exactly as we would wish. Since any suit can be chosen for this honor there are three ways this 
can be done for each C-tope or D-tope. The 10 involved generators imply a new 10-simplex 
in aspect space of the type we shall refer to henceforth as an ‘E-tope’. Note that each E-tope 
is distinguished by its characteristic suit (used to imply the hub weighting) and, to each suit 
there are associated 16 different and non-overlapping E-topes whose union forms the whole of 
the parent B-tope. Each E-tope is thus the union of 3 C-topes and one D-tope. Referring 
back to Table 5 implicitly defining the symbolic [0 : 3] × [0 : 3] × [0 : 3] lattice of complement-
indices, where each of the 64 points could be identified with either a C-tope or a D-tope, we 
can now identify all the E-topes of a given suit with the 16 parallel lines (aligned with that suit 
coordinate) in this little symbolic lattice, and verify that each contains one (and only one) of 
the designated D-tope images. 

In order to dissect each B-tope into constituent disjoint E-topes in a uniquely defined way, 
we rotate it in such a way that the Galois colors of its ordered sequence of 12 vertices exactly 
matches (within a uniform cyclic color shift) one of the patterns implied by one of the last three 
rows of Table 2. Apart from the color off-set, the four generators of suit-0 are to found at the 
(relative) colors of this table at which we find the quartet of vertex indices, {0, 1, 2, 3}, those of 
suit-1 where we find {4, 5, 6, 7} and those of suit-2 where we find vertex labels, {8, 9, 10, 11}. 
Thus, the projection into GF (16) also largely takes care of sorting out the geometry of the 
generators relative to one another. This enables us to always choose to decompose the B-tope 
dodecad into its 16 component E-topes with the now identified suit-0 as the ‘special’ one, as 
discussed above. Recall that each component E-tope is obtained from the parent B-tope by 
omitting one B-tope vertex from suit-1 and one vertex from suit-2. 

It is convenient, for the purposes of efficient tabulation, if we can re-label the B-tope vertices 
in each case such that the omitted pair are the last members of the respective suits 1 and 2 
after this re-labeling. It is also very convenient if all 12 of the generators of the B-tope have 
their relative orientations, i.e., their signs, arranged in such a way that, if ‘DODEC’ denotes 
the matrix of 12 column 4-vectors arranged in three blocks of four, then this matrix is derived 
from the first four of them, which we denote ‘BASIS’, by the matrix-multiplication rule, 

DODEC = (BASIS × DODEC0)/2 (4.5) 
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TABLE 6. Table of the standardized Galois field 
‘colors’ gk of the vertices vk of each E-tope of the 
B-sets of type L. ‘K’ is the identifier of each par-

ticular E-tope decad type. 
K v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 

12 10 1 4 5 14 6 13 11 7 9 

13 4 5 10 1 13 3 14 11 7 9 

14 5 4 1 10 3 13 6 11 7 9 

15 1 10 5 4 6 14 3 11 7 9 

16 5 4 1 10 14 6 13 12 9 7 

17 1 10 5 4 13 3 14 12 9 7 

18 10 1 4 5 3 13 6 12 9 7 

19 4 5 10 1 6 14 3 12 9 7 

20 1 10 5 4 14 6 13 7 11 12 

21 5 4 1 10 13 3 14 7 11 12 

22 4 5 10 1 3 13 6 7 11 12 

23 10 1 4 5 6 14 3 7 11 12 

24 4 5 10 1 14 6 13 9 12 11 

25 10 1 4 5 13 3 14 9 12 11 

26 1 10 5 4 3 13 6 9 12 11 

27 5 4 1 10 6 14 3 9 12 11 

where ‘DODEC0’ is the matrix exactly as defined in (3.7). This rule obviously exploits the fact 
that the first four columns, making up suit-0, of DODEC0, are just twice the identity matrix. 

If we consider the group of operations that combine the even permutations of the columns 
of suit-0 indicated by the ‘Klein 4-group’ representation: 

V0 = (0, 1, 2, 3) 
V1 = (1, 0, 3, 2) 
V2 = (2, 3, 0, 1) 
V3 = (3, 2, 1, 0) (4.6) 

combined with a possible switching of the signs of the permuted columns, we find that the 
vectors of suit-1 are permuted amongst themselves and the vectors of suit-2 are permuted 
amongst themselves (possibly with sign-switches) in such a way that it is always possible to find 
a way to place the generators designated for omission at the desired locations, nominally new 
columns 7 and 11. We can now give to each E-tope’s true decad, an identifier that distinguishes 
it amongst the 16 belonging to the same B-tope, and list the colors, relative to its off-set, of 
the newly labeled 10 vertices, where vertices 0–3 are the newly ordered vertices still of suit-0, 
vertices 4–6 are the three remaining of suit-1, and vertices 7–9 are those remaining of suit-2. 

With the convention established, we can derive the full representative set of generators of 
an E-tope from the same basis, suitably permuted, by applying to the same basis of first-four 
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TABLE 7. Table of the relative Galois field ‘col-
ors’ gk of the vertices vk of each E-tope of the 

0 
B-sets of type L . ‘K’ is defined as in Table 6. 
K v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 

28 5 2 8 10 13 12 11 7 14 3 

29 8 10 5 2 11 6 13 7 14 3 

30 10 8 2 5 6 11 12 7 14 3 

31 2 5 10 8 12 13 6 7 14 3 

32 10 8 2 5 13 12 11 9 3 14 

33 2 5 10 8 11 6 13 9 3 14 

34 5 2 8 10 6 11 12 9 3 14 

35 8 10 5 2 12 13 6 9 3 14 

36 2 5 10 8 13 12 11 14 7 9 

37 10 8 2 5 11 6 13 14 7 9 

38 8 10 5 2 6 11 12 14 7 9 

39 5 2 8 10 12 13 6 14 7 9 

40 8 10 5 2 13 12 11 3 9 7 

41 5 2 8 10 11 6 13 3 9 7 

42 2 5 10 8 6 11 12 3 9 7 

43 10 8 2 5 12 13 6 3 9 7 

4-vectors, a right-multiplication by the 4 × 12 matrix: ⎡ ⎤
2 0 0 0 −1 1 1 −1 −1 −1 
0 2 0 0 −1 1 −1 1 1 −1 
0 0 2 0 −1 −1 1 1 −1 1 
0 0 0 2 −1 −1 −1 1 −1 −1 

⎢⎢⎣ 
⎥⎥⎦DODEC0T = , (4.7) 

and dividing the result by two. 
We systematically decompose the B-tope whose color-complement is the line type L, into 

the 16 E-topes identified by the index K ∈ {12 : 27}. Similarly, the B-tope with complement 
L0 becomes the set with K ∈ {28 : 43}. The E-topes from the B-tope the color-complement L00 
become those with K ∈ {44 : 59}. Now that we have fully decomposed the aspect space uniquely 
into 60 K-types of decads, we can list the off-set-0 color versions of each of these types in a way 
that remains consistent with Table 2. We have already seen that Table 3 lists the relative colors 
of the vertices of the A-topes; Table 6 lists the same for the the E-topes of complement-L and 
Table 7 the corresponding data for the complement of the L0 . Table 8 tabulates the relative 
colors of the vertices of the E-topes whose color spectra exhibit the three-fold symmetry, i.e., 
complement-L00 . 

When we apply the squaring automorphism, we find that each K-type is transformed into 
a K-type of the same equivalence class, but not necessarily with the same K. A table of 
these K-type images under the application of this automorphism is given (with some obvious 
redundancy) by Table 9. 

With the global status of the A-tope and E-tope decad tilings now defined, we can compute 
the remaining needed combinatorial attributes. For example, opposite to each vertex, vi of the 

19 



TABLE 8. Table of the relative Galois field ‘col-
ors’ gk of the vertices vk of each E-tope of the 

00 
B-sets of type L . ‘K’ is defined as in Table 6. 
K v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 

44 1 8 4 2 9 13 7 3 12 14 

45 2 4 8 1 6 7 13 3 12 14 

46 4 2 1 8 7 6 9 3 12 14 

47 8 1 2 4 13 9 6 3 12 14 

48 4 2 1 8 9 13 7 14 11 3 

49 8 1 2 4 6 7 13 14 11 3 

50 1 8 4 2 7 6 9 14 11 3 

51 2 4 8 1 13 9 6 14 11 3 

52 8 1 2 4 9 13 7 12 3 11 

53 4 2 1 8 6 7 13 12 3 11 

54 2 4 8 1 7 6 9 12 3 11 

55 1 8 4 2 13 9 6 12 3 11 

56 2 4 8 1 9 13 7 11 14 12 

57 1 8 4 2 6 7 13 11 14 12 

58 8 1 2 4 7 6 9 11 14 12 

59 4 2 1 8 13 9 6 11 14 12 

TABLE 9. Cycles of the decad type Kn indices n in-
duced by the squaring automorphism of GF (16). 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1 

2 

3 

0 

5 

6 

7 

4 

9 

8 

2 

3 

0 

1 

6 

7 

4 

5 

3 

0 

1 

2 

7 

4 

5 

6 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

20 

16 

24 

14 

22 

26 

13 

17 

25 

15 

23 

19 

36 

32 

40 

30 

38 

42 

29 

33 

41 

31 

39 

35 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

51 

59 

47 

55 

49 

57 

45 

53 

50 

58 

46 

54 

48 

56 

44 

52 

53 

52 

55 

54 

57 

56 

59 

58 

45 

44 

47 

46 

49 

48 

51 

50 

58 

50 

54 

46 

56 

48 

52 

44 

59 

51 

55 

47 

57 

49 

53 

45 

A-topes and E-topes, we would like to know what K type of neighbor is found there and with 
what relative color. This information is provided for the A-topes in the tables 10, 11, and 12. 
Note that, for a neighbor with a K-type in the range 44–59, corresponding to the complement 
of lines L00 of PG(3, 2), there are three choices with relative color increments differing by 5 
or 10. This is owing to the fact that these neighbors must have their final decad color off-set 
assignments (relative to the entries of Table 8) restricted to the range [0 : 4] because of their 
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3-fold symmetries. 
For A-topes in the equivalence class with K ∈ {0 : 3}, listed in Table 10, the neighbor op-

posite each vertex, v5, is of the L00-complement type (indices K ∈ {44 : 59}) so there are three 
listed possibilities for the neighbor K index and relative color, with the choice being, as we 
have seen, the one that keeps the absolute color off-set of this neighbor within its valid range 
[0 : 4] relative to the standardarized (zero off-set) of Table 8. 

For the A-topes in the equivalence class with K ∈ {4 : 7}, listed in the left-hand section of 
Table 11, there are now two vertices, v1 and v2, opposite to which the neighbors belong to 
the L00-complement set where, again, three possibilities need to be tabulated. Apart from this 
minor complication, each successive column, here and in Table 10, is the result of applying the 
squaring automorphism to the entries in the preceding column in accordance with the cycling 
of the K labels set out in Table 9, so the symmetries of GF (16) are providing some redundancy 
to our tabulations. The right-hand section of Table 11 provides the same information for 
the equivalence class consisting of the pair, K ∈ {8, 9}. And separately, Table 12 provides 
the data for the single-K classes, K = {10} and K = {11}. In the cases of the equivalence 
classes {K8, K9}, {K10}, {K11}, we indicate, in the respective appended columns, how the 
squaring automorphism permutes the vertices into the new vertex labels (i.e., ‘rotates’ the 
decad orientation) at the point where the cycle begins again. These symmetries have no intrinsic 
significance beyond the fact that thay can potentially be exploited in the initialization of these 
tables in the software algorithm from a more compact core of the essential data that implicitly 
encodes them. 

TABLE 10. For decad types K ∈ {0 : 3}
and vertex vk, the neighbor type Kk an
its color increment(s), modulo-15, at th

position opposite to vertex vk . 

, 
d 
e 

vk K = 0 K = 1 K = 2 K = 3 

v0 

v1 

v2 

v3 

v4 

18 

12 

25 

43 

32 

4 

3 

13 

4 

14 

34 

28 

41 

27 

14 

8 

6 

11 

8 

13 

18 

12 

23 

43 

30 

1 

12 

7 

1 

11 

34 

28 

39 

27 

16 

2 

9 

14 

2 

7 

56 0 48 0 49 0 57 0 

v5 54 

45 

5 

10 

46 

59 

10 

5 

47 

52 

5 

10 

55 

50 

10 

5 

v6 

v7 

v8 

v9 

36 

37 

38 

42 

0 

3 

2 

5 

13 

21 

17 

19 

0 

6 

4 

10 

29 

37 

33 

35 

0 

12 

8 

5 

20 

21 

22 

26 

0 

9 

1 

10 

Tables of neighbor K-types and relative color off-sets for the E-topes are given in a slightly 
different format. The K-type data for the related set of 16 E-topes belonging to a same B-
tope ∈ L are given in Table 13. Again, the options are provided in the cases where the final 
neighbor color assignment is restricted due to either three-fold or five-fold symmetry of the 
color spectrum of the associated B-tope or the A-tope. It is only from K = 18 that the A-tope 
of type K = 11 is encountered, where the deacd’s color is always only 0, 1 or 2. Also, it is only 
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TABLE 11. For decad types K ∈ {4 : 9}, and vertex vk, the neighbor 
type Kk and its color increment(s), modulo-15, at the position opposite 

to vertex vk. 
vk K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 0 vk of 0 

8K

v0 20 13 36 11 13 7 29 14 26 2 42 4 → 0 
3v 

54 2 46 4 47 8 55 1 57 1 56 2 

v1 53 7 58 14 44 13 51 11 58 6 44 12 → 0 
2v 

57 12 56 9 48 3 49 6 54 11 46 7 

52 1 50 2 45 4 59 8 48 4 49 8 

v2 45 6 59 12 52 9 50 3 51 9 53 3 → 0 
1v 

44 11 51 7 53 14 58 13 47 14 55 13 

v3 

v4 

v5 

v6 

v7 

v8 

v9 

22 

40 

24 

32 

25 

42 

31 

7 

1 

14 

0 

0 

2 

6 

38 

15 

40 

14 

41 

19 

24 

14 

2 

13 

0 

0 

4 

12 

17 

31 

15 

30 

23 

35 

40 

13 

4 

11 

0 

0 

8 

9 

33 

24 

31 

16 

39 

26 

15 

11 

8 

7 

0 

0 

1 

3 

19 

43 

20 

33 

38 

13 

28 

8 

5 

1 

9 

6 

4 

0 

35 

27 

36 

22 

17 

29 

12 

1

10

2

3

12

8

0

→ 

→ 

→ 

→ 

→ 

→ 

→ 

0 
0v 
0 
4v 
0 
8v 
0 
7v 
0 
6v 
0 
5v 
0 
9v 

TABLE 12. For decad types K = 10 and K = 
11, and vertex vk, the neighbor type Kk and 
its color increment(s), modulo-15, at the po-

sition opposite to vertex vk. 
vk 

v0 

v1 

v2 

v3 

v4 

v5 

v6 

v7 

v8 

v9 

K = 10 

39 11 

14 14 

23 13 

37 10 

21 5 

30 13 

16 11 

32 7 

25 7 

41 14 

0 
8

0 
5

0 
0

0 
4

0 
3

0 
6

0 
7

0 
1

0 
9

0 
2

0 vk of K0 s 

→ v 

→ v 

→ v 

→ v 

→ v 

→ v 

→ v 

→ v 

→ v 

→ v 

K = 11 

34 2 

34 8 

18 13 

18 10 

18 7 

34 11 

34 14 

18 1 

34 5 

18 4 

0 
9 
0 
7 
0 
5 
0 
8 
0 
6 
0 
4 
0 
2 
0 
0 
0 
3 
0 
1 

0 vk of K0 s 

→ v 

→ v 

→ v 

→ v 

→ v 

→ v 

→ v 

→ v 

→ v 

→ v 

opposite the vertex v0 of all these E-tope K-types that we encounter neighbors of a different 
B-tope with 

00
K ∈ L , where the three-fold color symmetry occurs. The appended extra row of 

this table indicates which K is the image under the application of the squaring automorphism 
(which is trivial in this particular table, since we simply add 16). The relative colors for 
the ‘interior’ neighbors (same parent B-tope), opposite vertices vk with k > 3 are always zero, 
and  

 are therefore omitted. In Table 14, we present the corresponding data for K ∈ L 
0, and 

notice that it is from only K = 34, opposite v3 again, that we need to accommodate the special 
symmetry of the K = 11 neighbor. The appended right columns indicate how the vertex labels 
become permuted by the squaring automorphism when we cycle back to the Ks in the previous 
range, 12 – 27, (i.e., the Ks in L, and the appended bottom rows are no longer trivial, since 
the squaring automorphism now permutes both rows and columns as we cycle back. Finally, the 
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TABLE 13. For decad types K ∈ L and vertex vk , the neighbor type Kk and its 
color increment(s), modulo-15, at the position opposite to vertex vk. 

vk K = 12 K = 13 K = 14 K = 15 K = 16 K = 17 K = 18 K = 19 

55 1 

v0 27 10 19 4 16 12 39 12 14 3 45 6 34 10 13 11 

48 11 

v1 0 12 8 11 5 0 5 13 10 4 6 2 0 11 1 5 

v2 2 3 1 0 10 1 7 12 7 0 9 3 2 14 5 11 

v3 9 0 6 8 1 2 6 4 3 8 1 11 11 2 + 3t 8 7 

v4 14 15 12 13 18 19 16 17 

v5 13 12 15 14 17 16 19 18 

v6 15 14 13 12 19 18 17 16 

v7 16 17 18 19 12 13 14 15 

v8 24 25 26 27 20 21 22 23 

v9 20 21 22 23 24 25 26 27 

K0 ,→ 28 ,→ 29 ,→ 30 ,→ 31 ,→ 32 ,→ 33 ,→ 34 ,→ 35 

vk K = 20 K = 21 K = 22 K = 23 K = 24 K = 25 K = 26 K = 27 

46 4 

v0 26 1 37 5 52 9 40 9 41 3 31 6 20 14 12 5 

47 14 

v1 3 0 1 9 9 12 10 2 5 3 4 0 7 14 1 7 

v2 8 14 3 6 4 8 6 0 7 7 10 8 3 5 3 13 

v3 4 2 10 10 3 14 2 8 4 1 0 2 8 13 9 5 

v4 22 23 20 21 26 27 24 25 

v5 21 20 23 22 25 24 27 26 

v6 23 22 21 20 27 26 25 24 

v7 24 25 26 27 20 21 22 23 

v8 16 17 18 19 12 13 14 15 

v9 12 13 14 15 16 17 18 19 

K0 ,→ 36 ,→ 37 ,→ 38 ,→ 39 ,→ 40 ,→ 41 ,→ 42 ,→ 43 

Table 15 provides the data for the E-topes in 
00L whose parent B-tope’s color spectrum exhibits 

the three-fold symmetry. The options in the v0-row are only of two choices in the particular 
cases K = 44, 51, 53, 58 where the exterior neighbor is another L00-complement E-tope. 

To make the algorithm that resolves each given aspect tensor in its proper decad efficient, 
additional tables must be set up to define how a transition from one decad to its neighbor 
shuffles the colors of the nine generators that remain in common to the new decad’s vertices, 
as well as recording both the color of the old decad lost and the color of the new decad gained, 
in their proper places in the vertex list. This is most conveniently done by tabulations of 
permutations amongst the ten vertex labels. Also tabulated for each possible transition are 
the 4 × 4 matrices that transform the old basis set (first four of the 4-vectors of the A-tope or 
E-tope) to the new basis set. By performing the transformation this way at all the intermediate 
steps of the iterative solution procedure, it is not actually necessary to recompute at each step 
the full set of each decad’s 4-vectors. However, we must have a mechanism to tell the algorithm 
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TABLE 14. For decad types K ∈ L and vertex vk, the neighbor type Kk and its color incre-
ment(s), modulo-15, at the position opposite to vertex vk. 

vk K = 28 K = 29 K = 30 K = 31 K = 32 K = 33 K = 34 K = 35 0 vk of K0 ∈ L 

54 2 

v0 43 5 35 8 32 9 25 9 30 6 59 12 18 5 29 7 → 0v0 

49 7 

v1 

v2 

v3 

1 

3 

8 

9 

6 

0 

9 

2 

7 

7 

0 

1 

6 

10 

2 

0 

2 

4 

6 

4 

7 

11 

9 

8 

10 

4 

0 

8 

0 

1 

7 

8 

2 

4 

6 

7 

1 

3 

11 4 + 

7 

13 

3t 

2 

6 

9 

10 

7 

14 

→ 

→ 

→ 

0 v2 
0 v1 
0 v3 

v4 

v5 

v6 

30 

29 

31 

31 

28 

30 

28 

31 

29 

29 

30 

28 

34 

33 

35 

35 

32 

34 

32 

35 

33 

33 

34 

32 

→ 

→ 

→ 

0 v7 
0 v9 
0 v8 

v7 

v8 

v9 

32 

40 

36 

33 

41 

37 

34 

42 

38 

35 

43 

39 

28 

36 

40 

29 

37 

41 

30 

38 

42 

31 

39 

43 

→ 

→ 

→ 

0 v4 
0 v6 
0 v5 

K0 ,→ 12 ,→ 20 ,→ 16 ,→ 24 ,→ 14 ,→ 22 ,→ 18 ,→ 26 

vk K36 K = 37 K38 K = 39 K40 K = 41 K42 K = 43 0 vk of K0 ∈ L 

47 8 

v0 42 2 21 10 50 3 15 3 23 6 24 12 36 13 28 10 → 0v0 

56 13 

v1 

v2 

v3 

0 

9 

5 

0 

13 

4 

2 

0 

10 

3 

12 

5 

8 

5 

0 

9 

1 

13 

10 

7 

3 

4 

0 

1 

6 

4 

5 

6 

14 

2 

5 

10 

1 

0 

1 

4 

4 

0 

9 

13 

10 

11 

2 

0 

8 

14 

11 

10 

→ 

→ 

→ 

0 v2 
0 v1 
0 v3 

v4 

v5 

v6 

38 

37 

39 

39 

36 

38 

36 

39 

37 

37 

38 

36 

42 

41 

43 

43 

40 

42 

40 

43 

41 

41 

42 

40 

→ 

→ 

→ 

0 v7 
0 v9 
0 v8 

v7 

v8 

v9 

40 

32 

28 

41 

33 

29 

42 

34 

30 

43 

35 

31 

36 

28 

32 

37 

29 

33 

38 

30 

34 

39 

31 

35 

→ 

→ 

→ 

0 v4 
0 v6 
0 v5 

K0 ,→ 13 ,→ 21 ,→ 17 ,→ 25 ,→ 15 ,→ 23 ,→ 19 ,→ 27 

whether the present decad is the solution, or, if not, which neighbor it should transition to. In 
all the polyad algorithms, this is decided by examining the set of ten ‘weights’, Wi, associated 
with each of the generators gi of the decad. If all the weights are non-negative (in practice, 
to avoid a numerical stalemate, the actual criterion is whether all the weights are greater than 
a very small negative threshold) then we deem the solution to be the present decad; if not, 
we locate the most negative of these projected aspect weights, and transition to the decad 
neighbor opposite to this indicated vertex of the tensor image 10-simple (the A-tope or E-tope) 
of the present decad. In making the transition, all the projected aspect weights change, of 
course, but they change in a very simple way since the linear system they solve involves a 
matrix L (the matrix with columns made of the tensor images of each of the generator self-
exterior products), so only one column of this matrix changes when the transition is made. The 
well-known Sherman-Morrison-Woodbury formula (e.g., Press et al., 1989) applied to this case 
informs us that the inverse of the matrix changes by a rank-1 update. In the context of the 
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TABLE 15. For decad types K ∈ L and vertex vk, the neighbor type Kk and its color 
increment(s), modulo-15, at the position opposite to vertex vk . 

vk K = 44 K = 45 K = 46 K = 47 K = 48 K = 49 K = 50 K = 51 0 vk 

v0 53 1 17 9 22 11 38 7 17 4 33 8 38 12 58 2 → 0 
0v 

11 12 

v1 

v2 

v3 

9 

4 

6 

3 

4 

2 

6 

0 

4 

11 

5 

9 

1 

9 

5 

5 

8 

11 

6 

8 

2 

7 

1 

10 

8 

6 

1 

11 

12 

0 

2 

7 

9 

0 

9 

7 

7 

3 

5 

12 

10 

13 

7 

5 

8 

4 

8 

6 

→ 

→ 

→ 

0 
3v  
0 
2v  
0 
1v  

v4 

v5 

v6 

45 

46 

47 

44 

47 

46 

47 

44 

45 

46 

45 

44 

49 

50 

51 

48 

51 

50 

51 

48 

49 

50 

49 

48 

→ 

→ 

→ 

0 
9v  
0 
8v  
0 
7v  

v7 

v8 

v9 

56 

48 

52 

57 

49 

53 

58 

50 

54 

59 

51 

55 

52 

44 

56 

53 

45 

57 

54 

46 

58 

55 

47 

59 

→ 

→ 

→ 

0 
6v  
0 
5v  
0 
4v  

K0 ,→ 51 ,→ 59 ,→ 47 ,→ 55 ,→ 49 ,→ 57 ,→ 45 ,→ 53 

vk K = 52 K = 53 K = 54 K = 55 K = 56 K = 57 K = 58 K = 59 0 vk 

v0 22 6 44 4 33 13 17 14 38 2 22 1 51 3 33 3 → 0 
0v 

14 13 

v1 

v2 

v3 

4 

2 

6 

14 

5 

6 

9 

6 

4 

12 

1 

8 

4 

8 

0 

13 

4 

10 

3 

9 

7 

5 

2 

14 

0 

5 

9 

0 

6 

13 

8 

4 

3 

14 

3 

0 

5 

7 

8 

1 

2 

9 

5 

1 

7 

3 

10 

7 

→ 

→ 

→ 

0 
3v  
0 
2v  
0 
1v  

v4 

v5 

v6 

53 

54 

55 

52 

55 

54 

55 

52 

53 

54 

53 

52 

57 

58 

59 

56 

59 

58 

59 

56 

57 

58 

57 

56 

→ 

→ 

→ 

0 
9v  
0 
8v  
0 
7v  

v7 

v8 

v9 

48 

56 

44 

49 

57 

45 

50 

58 

46 

51 

59 

47 

44 

52 

48 

45 

53 

49 

46 

54 

50 

47 

55 

51 

→ 

→ 

→ 

0 
6v  
0 
5v  
0 
4v  

K0 ,→ 50 ,→ 58 ,→ 46 ,→ 54 ,→ 48 ,→ 56 ,→ 44 ,→ 52 

solution of the linear system solving for the projected weights, this means that these weights 
change in a predictable pattern of proportions for each possible transition, and in proportion to 
the magnitude of the ‘most negative’ weight attached to the column of the matrix undergoing 
the change, since this corresponds to the generator that is replaced. It is significant that the 
determinant of the matrix formed by the ten aspect vectors of each simplex of this algorithm is 
±1; as a consequence, the weight attached to the new ‘gained’ vertex of the recruited 10-simplex 
in the transition is positive and exactly of the same magnitude as the negative weight of the 
‘lost’ vertex of the retired 10-simplex. The pattern of all the other these proportions of weight 
changes relative to the triggering negative weight, which are all integers (of both signs) are 
precomputed for each type of transitions, and combined with the tabulated permutations for 
these transitions so that the new vector of weights, W 0 

i , is efficiently computed from the old 
weights Wi, bypassing the explicit solution of the ten-dimensional linear inversion problem each 
iteration. The iterative algorithm can always be initiated from the default decad first guess 
given by (3.6), and the precalculated inverse, L−1 , of the system matrix for this special starting 
case can be used to generate the initial weight vector, W , by the simple linear projection from 

25 



the aspect tensor’s 10-vector representation, A: 

W = L−1A. (4.8) 

These additional tables containing the vertex-index permutations, the rank-1 update profile 
vectors, and the basis transformation matrices for each possible transition, are too voluminous 
to be given here. 

At the termination of this decad algorithm, we are provided with the K-type of the decad 
and its relative color off-set, from which, by use of the tables, the true Galois colors of the ten 
generators is known. The basis set of 4-vectors is provided, hence the full set of the generators 
becomes known by multiplying on the right by the appropriate matrix, DEC0, or DODEC0T/2. 
The weights W are provided by the algorithm, as discussed above. A quasi-Gaussian smoothing 
operation can now be synthesized from the ten sequentially applied line smoothers (also each 
quasi-Gaussian) where each line smoother’s second moment, in units of the generalized grid line 
along which it is applied, is just the corresponding weight component, Wi, of W . 

5. Discussion and conclusions 

The problem we have addressed is to find a systematic way of generalizing the existing 
Triad and Hexad algorithms of two and three dimensions to the true Decad algorithm in four 
dimensions. We have succeeded by exploiting the symmetry properties of the Galois field, 
GF (16) and its associated finite project geometry, PG(3, 2), especially the restricted group of 
the automorphisms that we have called Aut+{PG(3, 2)} that seem best adapted to our problem. 
The outcome is a reliable algorithm which, given any valid 4D symmetric aspect tensor with 
its ten independent components, will provide a unique set (the decad) of generalized grid line 
directions (the integer 4-vector generators). In addition the algorithm supplies precisely the 
amount (measured by the rank-one projected aspect tensor weight) of Gaussian smoothing that 
is required to be applied along the space-time grid lines oriented parallel to these generators, 
in the sequence orchestrated by the different Galois colors, so that the product smoothing 
operation is the Gaussian convolution with exactly the second moment ‘aspect tensor’ attribute 
intended. 

The expected application of this method is primarily to a data analysis generalizing what is 
already being done in the 2D and 3D RTMA (Pondeca et al., 2011), to a new kind of ‘nowcasting’ 
analysis in four dimensions covering a period of time too brief to fit well with the use of a costly 
forecast model initialization and integration. It is envisaged that the 4D covariances of this 
scheme would be crafted to stretch out along previously anticipated flow trajectories, as well 
as to possess the usual spatial anisotropies. In this way, without the intervention of an explicit 
model integration during the analysis period, the information from data collected up to the 
present could be objectively analyzed in a more temporally consistent way and extrapolated 
in the most natural way for a short period into the immediate future, with obvious benefits to 
the operational forecasting community. In this context, we believe that the accomplishment of 
providing a successful and efficient Decad Algorithm presents a new practical opportunity in 
the realm of operational objective nowcasting. 
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